西罗定理 西罗定理

设p是一个质数;则可定义一个G的西罗p-子群(有时称为p-西罗子群),其为G的最大p-子群(即一个其为p-群且不为其他G之p-子群的纯子群之子群)。所有给定一质数p之西罗p-子群所组成之集合有时会写成Sylp(G)。在一种或另一种意思下皆为最大之子群的集合在群论中并没有不一样。这里很不可思议的为在Sylp(G)内的例子,每个元素都会实际地共轭于另一个元素;且此一性质可以被用来决定G的其他性质。

中文名

西罗定理

提出者

Sylow

应用学科

数学

适用领域

代数

定理定义

第一Sylow定理:设

是以阶为

的有限群,

是素数,

,对每个

(

),

中含有

阶的子群,并且

中每个

阶的子群是某个

阶子群的正规子群。

第二Sylow定理:设

是有限群

的一个

子群,

的一个Sylow

子群,则存在

属于

,使得

包含于

,特别地,

的任意两个Sylow

子群共轭。

第三Sylow定理:设

是一个有限群,

是一个素数,则

的Sylow

子群的个数

的一个因子,且

验证推导

考察

中所有

阶子集

,则

左乘作用于

,则对任意

有群

固定之,所以

的陪集合,故

所以

。由于任意轨道大于

均被

整除,所以所有的

轨道总数

(其中

为轨道数),由于此式对循环群也成立但循环群只有一个

阶群,故有

。因此

,即存在

阶群,定理一得证。

由于

故有

,因此

的轨道为群

的所有陪集合,因此每个轨道对应不同的

阶群,故定理三得证。

考察如上的任一Sylow

子群

的左陪集合,让

作用于它。由

有不动点陪集存在,即

由此得

,因此

,定理二得证。

至于定理一后半部分,由

关于

的重陪集分解的陪集数为1的分解数等于

,知

的共轭固定群),又由Cauchy定理

存在

阶群

,即可得到

,至此Sylow定理证毕。

应用例子

引理

:若

只有一个Slyow-p子群那么这个Sylow-p子群正规于

证明

:设P是G的一个Sylow-p子群,则对于G内任意一个元素 g,仍是G的一个Sylow- p子群

而由Slyow定理,所有Sylow-p子群两两共轭

∴ P正规于G

例1:

15阶群一定是循环群

证明

:设

是一个群,且

,则Slyow-3子群的个数

,且

,即

,即G只有一个Sylow-3子群

∴这个Sylow-3子群是G的正规子群

同理:G只有一个Sylow-5子群,且这个Sylow-5子群是G的正规子群

又∵

,而Sylow-3子群

Sylow-5子群

,|Sylow-3子群|

|Sylow-5子群|

其中

为Sylow-3子群生成元,

为Sylow-5子群生成元。(否则由

,即

这会推出

与其不相交矛盾。)

∴由交换群的阶相乘性质

的阶位15,故其循环。

例2:

350阶群不是单群

证明

:∵

∴由Slyow定理:Slyow-5子群的个数

,且

,即

∴由例①中的引理:G必然会有一个阶为25的正规子群

∴350阶群不可能为单群